Arts, Science and Commerce College, Indapur, Dist. Pune TEACHING AND EVALUATION PLAN

Name of the teache	er Dr. Veer Shivaji Shamrao	Year: 2018-19	Semester: 3
Subject: Phys	sics	Paper PH212: ELECTRONICS	Class: S.Y.B.Sc.

	Part I : Teaching Plan						Part II : Evaluation of Plan			
1	2	3	4	5	6	7 8		9	10	
Sr. No.	Month	Week	No. of working days	No. of periods available	Topics to be taught	No. of periods engaged	Topics taught	Deviation in periods	Remarks	
1	Jun	1&2	8	3	NETWORK THEOREMS Kirchhoff's laws (revision) Voltage and Current divider circuits Thevenin's theorem Norton's theorem	3	NETWORK THEOREMS Kirchhoff's laws (revision) Voltage and Current divider circuits Thevenin's theorem Norton's theorem	Nil		
		3&4	11	6	Super-position theorem Maximum power transfer theorem (All theorems 1.3 to with proof) Problems.	6	Super-position theorem Maximum power transfer theorem (All theorems 1.3 to 1.6 with proof) Problems.	Nil		
		5	6	3	BIJUNCTION TRANSISTOR Revision of bipolar junction transistor, types, symbols and basic action. Configurations (Common Base, Common Emitter & Common Collector)	3	BIJUNCTION TRANSISTOR Revision of bipolar junction transistor, types, symbols and basic action Configurations (Common Base, Common Emitter & Common Collector)	Nil		
2	July	1&2	12	6	Current gain factors (α &β) and their relations. Input, output and transfer characteristics of CE, CB & CC configurations. Biasing methods: Base bias, Emitter feedback and voltage divider DC load lines (CE), Operating point (Q point) Transistor as a switch Problems.	6	. Current gain factors (α &β) and their relations. Input, output and transfer characteristics of CE, CB & CC configurations. Biasing methods: Base bias, Emitter feedback and voltage divider DC load lines (CE), Operating point (Q point) Transistor as a switch Problems.	Nil		
		3&4	12	6	OPERTAIONAL AMPLIFIERS Introduction Ideal and practical Characteristics Operational amplifier: IC 741- Block diagram and Pin diagramConcept of virtual groundInverting and non-inverting operational amplifiers with concept of gain	6	OPERTAIONAL AMPLIFIERS Introduction Ideal and practical Characteristics Operational amplifier: IC 741- Block diagram and Pin diagramConcept of virtual groundInverting and non-inverting operational amplifiers with concept of gain	Nil		

		5	2	2	Operational amplifier as an adder and substracter.Problems OSCILLATROS	2	Operational amplifier as an adder and substracter.Problems OSCILLATROS	Nil	
3	Aug	1&2	10	6	Concept of positive and negative feedback Barkhausein criteria for an oscillator Construction, working and applications of Phase shift oscillator using IC-741Problems.	6	Concept of positive and negative feedback Barkhausein criteria for an oscillator Construction, working and applications of Phase shift oscillator using IC-741Problems.	Nil	
		3&4	8	4	POWER SUPPLY Concept and working of rectifier half wave, full wave and bridge rectifierRipple voltageRC filter circuit	4	POWER SUPPLY Concept and working of rectifier half wave, full wave and bridge rectifierRipple voltageRC filter circuit	Nil	
		5	5	3	Unregulated and regulated power supplyConcept of load and line regulation Zener as regulator Problems.	3	Unregulated and regulated power supplyConcept of load and line regulation Zener as regulator Problems.		
4	Sep.	1&2	7	3	NUMBER SYSTEM AND LOGIC GATES Number systems: Binary, Binary coded decimal (BCD), Octal, Hexadecimal Addition and subtraction of binary numbers and binary fractions using one's and two's complement.	3	NUMBER SYSTEM AND LOGIC GATES Number systems: Binary, Binary coded decimal (BCD), Octal, Hexadecimal Addition and subtraction of binary numbers and binary fractions using one's and two's complement.	Nil	
		3&4	10	5	Basic logic gates (OR, AND, NOT) Derived gates: NOR, NAND, EXOR, EXNOR with symbols and truth tables Boolean Algebra	5	Basic logic gates (OR, AND, NOT) Derived gates: NOR, NAND, EXOR, EXNOR with symbols and truth tables Boolean Algebra	Nil	
	The also at	5	6	3	De Morgan's theorems and its verification Problems	3	De Morgan's theorems and its verification Problems	Nil	

The plan should be prepared in duplicate.

2 One copy of the plan should be submitted at the beginning of the term after filling up columns 1 to 6.

The second copy must be retained by the teacher and submitted at the end of the term. Part second of the plan i. e. columns 7 to 10 must be filled up progressively at the end of every week.

Signature of Teacher

Signature of Head of Department

Head

Department of Physics Arts, Science & Commerce College,Indapur, Dist.Pune Signature of Faculty In-charge

Incharge

Science Faculty Arts, Science & Commerce College,Indapur, Dist.Pune Signature of the Principal

PRINCIPAL

ARTS, SCIENCE AND **COMMERCE COLLEGE** NDAPUR-412 108 DIST-PUNE

Arts, Science and Commerce College, Indapur, Dist. Pune TEACHING AND EVALUATION PLAN

Name of the teacher	Mr. Kamble Akin Vasant	Year:	2018-19	Semester: 5
Subject: Physics	Paper PHY-354: Atomic and Molecular Physics			Class: T.Y.B.Sc.

	Part I : Teaching Plan						Part II : Evaluation of Plan				
1	2.	3	4	5	6	7 8		9	10		
Sr. No.	Month	Week	No. of working days	No. of periods available	Topics to be taught	No. of periods engaged	Topics taught	Deviation in periods	Remarks		
1	Jun	1&2	8	3	Atomic structure . Revision of various atomic models Vector atom model (Concepts of space quantization and electron spin) Pauli Exclusion Principle and electron configuration, Quantum states, Spectral notations of quantumstates. Problems	3	Atomic structure . Revision of various atomicmodels Vector atom model (Concepts of spacequantization and electron spin) Pauli ExclusionPrinciple and electron configuration, Quantumstates, Spectral notations of quantum states. Problems	Nil			
		3&4	11	6	One and Two Valence electron systems Spin-Orbit Interaction (Single valence electron atom), Energy levels of Na-atom, Selection rules, Spectra of sodium atom, Sodium doublet	6	One and Two Valence electron systems Spin-Orbit Interaction (Single valence electron atom), Energy levels of Na-atom, Selection rules, Spectra of sodium atom, Sodium doublet	Nil			
		5	6	3	Spectral terms of two electron atoms, terms for equivalent electrons	3	Spectral terms of two electron atoms, terms for equivalent electrons	Nil			
2	July	1&2	12	6	Singlet-Triplet separations for interaction energy of LS coupling, Lande's interval rule, Spectra of Helium atom Problems	6	Singlet-Triplet separations for interaction energy of LS coupling, Lande's interval rule, Spectra of Helium atom Problems	Nil			
		3&4	12	6	Zeeman Effect Zeeman EffectExperimental arrangement Normal and anomalous Zeeman Effect	6	Zeeman Effect Zeeman EffectExperimental arrangement Normal and anomalous Zeeman Effect	Nil			
		5	2	2	Stark effect (Qualitative discussion) Applications of Zeeman effects Problems	2	Stark effect (Qualitative discussion) Applications of Zeeman effects Problems	Nil			

3	Aug	1&2	10	6	Molecular spectroscopy Introduction of molecular spectra and its types Rotational energy levels, Rotational spectra of rigid diatomic molecule Vibrational energy levels	6	Molecular spectroscopy Introduction of molecular spectra and its types Rotational energy levels, Rotational spectra of rigid diatomic molecule Vibrational energy levels	Nil	
		3&4	8	4	Rotational and Vibrational spectra Electronic spectra of molecules	4	Rotational and Vibrational spectra Electronic spectra of molecules	Nil	
4	S	5	5	3	Applications of UV-Vis spectroscopy Problems	3	Applications of UV-Vis spectroscopy Problems		
4	Sep.	1&2	7	3	Raman spectroscopy History of Raman effect, Molecular polarizability	3	Raman spectroscopy History of Raman effect, Molecular polarizability	Nil	
		3&4	10	5	Classical theory and Quantum theory of Raman Effect Characteristics Raman Lines	5	Classical theory and Quantum theory of Raman Effect Characteristics Raman Lines	Nil	
1	The plan sho	5 ould be pres	6 pared in dupli	3 cate	Applications of Raman spectroscopy Problems	3	Applications of Raman spectroscopy Problems	Nil	

One copy of the plan should be submitted at the beginning of the term after filling up columns 1 to 6.

The second copy must be retained by the teacher and submitted at the end of the term. Part second of the plan i. e. columns 7 to 10 must be filled up progressively at the end of every week. 3

Signature of Teacher

Signature of Head of Department

Head Department of Physics Arts, Science & Commerce Signature of Faculty In-charge Incharge Science Faculty Arts, Science & Commerce

College, Indapur, Dist. Pune

Rumay

Signature of the Principa

PRINCIPAL

ARTS, SCIENCE AND COMMERCE COLLEGE NDAPUR-413106 DIST-PUNE

Arts, Science and Commerce College, Indapur, Dist. Pune TEACHING AND EVALUATION PLAN

Name of the teacher	Mr. Holkunde Viresh Chandrakant	Year: 2018-19	Semester: 5
Subject: Physics	Paper PHY-352: Electrodynamics		Class: T.Y.B.Sc.

Part I : Teaching Plan						Part II : Evaluation of Plan					
1					g rian	7	8	9	10		
Sr. No.	Month	Week	No. of working days	No. of periods available	Topics to be taught	No. of periods engaged	Topics taught	Deviation in periods	Remarks		
1	Jun	1&2	8	3	Electrostatics Revision of Coulomb's law, Gauss law, Electric field, Electrostatic Potential. Potential energy of system ofcharges.Statement of Poisson's and Laplace's equation,	3	Electrostatics Revision of Coulomb's law, Gauss law, Electric field, Electrostatic Potential. Potential energy of system of charges. Statement of Poisson's and Laplace's equation,	Nil			
		3&4	11	6	Boundary Value problems in electrostatics- Solution of Laplace equation in Cartesian system, Boundary conditions.	6	Boundary Value problems in electrostatics- Solution of Laplace equation in Cartesian system, Boundary conditions.	Nil			
		5	6	3	Polarization P, Electric displacement D, Electric susceptibility and dielectric constant, bound volume and surface charge densities.	3	Polarization P, Electric displacement D, Electric susceptibility and dielectric constant, bound volume and surface charge densities.	Nil			
2	July	1&2	. 12	6	e. Electric field at an exterior and interior point of dielectric	6	e. Electric field at an exterior and interior point of dielectric	Nil			
		3&4	12	6	Magnetostatics Concepts of magnetic induction, magnetic flux and magnetic field. Magnetic induction due to straight current carrying conductor, magnetization of matter, relationship between B, H and M.	6	Magnetostatics Concepts of magnetic induction, magnetic flux and magnetic field. Magnetic induction due to straight current carrying conductor, magnetization of matter, relationship between B, H and M.	Nil			
		34.4			Boundary conditions at the interface of two magnetic media (Normal and tangential components		Boundary conditions at the interface of two magnetic media (Normal and tangential components				
		5	2	2		2		Nil			

3	Aug	1&2	10	6	Day to day applications of Electrodynamics. Concept of electromagnetic induction, Faradays law of induction	6	Day to day applications of Electrodynamics. Concept of electromagnetic induction, Faradays law of induction	Nil	
		3&4	8	4	Lenz's law, displacement current, generalization	4	Lenz's law, displacement current, generalization	Nil	
		5	5	3	Amperes' law. Maxwell's equations (Differential and Integral form)	3	Amperes' law. Maxwell's equations (Differential and Integral form)		
4	Sep.	1&2	7	3	physical significance	3	physical significance	Nil	
		3&4	10	5	Polarization, reflection and refraction of electromagnetic waves through media.	5	Polarization, reflection and refraction of electromagnetic waves through media.	Nil	
		5	6	3	Wave equation and plane waves in free space. Poynting theorem and Poynting vector.	3	Wave equation and plane waves in free space. Poynting theorem and Poynting vector.	Nil	

The plan should be prepared in duplicate.

One copy of the plan should be submitted at the beginning of the term after filling up columns 1 to 6.

The second copy must be retained by the teacher and submitted at the end of the term. Part second of the plan i. e. columns 7 to 10 must be filled up progressively at the end of every week.

signature of Teacher

Signature of Head of Department

Head

Department of Physics Arts, Science & Commerce College, Ir Tourn Dist Pune

Signature of Faculty In-charge Incharge

Science Faculty

Arts, Science & Commerce College,Indapur, Dist.Pune

PRINCIPAL ARTS, SCIENCE AND COMMERCE COLLEGE

INDAPUR-413106 DIST-PUNE